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Abstract

This paper presents cluster vector-based control for generating a vibration-free state in the designated area of a target

beam. Cluster control consisting of both cluster filtering and cluster actuation is shown, and the stability of a cluster

control system is investigated. Cluster filtering aims at extracting the information necessary for control, while cluster

actuation excites or suppresses the cluster filtering output without causing spillover. For generating a vibration-free state in

the designated area of a beam, where neither progressive waves nor reflected waves exist, state variables governing the

vibration of a beam must be extracted and suppressed. A cluster vector—the common link between cluster filtering and

cluster actuation—is introduced for this purpose. It is found that the suppression of a performance index, expressed in

terms of the cluster vector, generates a vibration-free state of a beam, whereas the suppression of conventional orthogonal

contributors, such as radiation modes, does not. Numerical simulation is performed, followed by an experiment, to verify

the validity of the results.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When suppressing the vibration of a distributed-parameter structure, control designers face the problem of
its infinite number of vibration modes. Of all the vibration control methodologies reported so far, there exist
two control strategies that can deal with an infinite number of structural modes. Direct velocity feedback
(DVFB) [1,2] is one such method, which uses collocated velocity sensors and actuators, enabling the
augmentation of the damping of all structural modes. However, this method is considered a low-authority
control (LAC) [3], because it is not capable of controlling specific modes of interest. The other control strategy
is active wave-absorbing control [4–12], which is based on the excitation mechanism of structural modes. By
suppressing the reflected waves induced in a structure, active wave-absorbing control inactivates all structural
modes, rather than augmenting the damping of a structure. Thus, active wave-absorbing control may be
considered as a process of implanting the characteristics of an infinite structure, wherein no vibration modes
occur, onto a finite structure.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
A error weighting matrix
E Young’s modulus
fi(t) control force at ith point
fdi(t) disturbance force at ith point
f control force vector
~f cluster control force vector
f̂ transformed force vector
G gain matrix
I second moment of area
J performance index
l0 beam length
L transformation matrix
mx(x) beam bending moment
Nd number of point disturbance forces
Nm number of point control forces
Ns number of velocity sensors
P nonsingular matrix
qx(x) beam shear force
Q orthonormal transformation matrix
T transpose of expression
T nonsingular matrix

T0 nonsingular transformation matrix
Tij transfer matrix between nodes i and j

u radiation mode vector
zi ith state vector
drs Kronecker’s delta function
d(x) Dirac’s delta function
D sensing interval
Zk(t) kth modal coefficient
g modal amplitude vector
y(x) beam slope
KG diagonal gain matrix
x(x, t) beam deflection
n displacement vector
n̂ transformed vector
~n cluster vector
r mass density
jk(x) kth eigenfunction
u eigenfunction vector
w power mode eigenfunctions
or rth resonance frequency
Xo transfer function matrix between control

force and displacement vectors
_x time derivative of x
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It is possible to group all the structural modes into a finite number of clusters [13], wherein all the structural
modes belonging to a particular cluster have the same common attributes. If the structural modes within a
given cluster are orthogonal to those in other clusters, the clusters may be controlled independently, thereby
enabling cluster control using a simple control strategy without causing spillover problems. Grouping all the
structural modes into a finite number of clusters is called cluster filtering [13], while independent control of
each cluster is termed cluster actuation [13]. Utilizing both cluster filtering and cluster actuation, cluster
control [13–15] may be performed. This approach is categorized as middle-authority control (MAC) [13],
whose characteristics lie between those of conventional LAC and high-authority control (HAC). Cluster
control offers the benefits of stability and control law simplicity analogous to LAC, while providing the high
control performance and some flexibility of control gain assignment of HAC.

Vibration control has long been considered as a control technique for augmenting the damping of structural
modes. However, even after perfectly augmenting the damping of structural modes, vibrations still occur in the
structure. Note that a perfect control performance over the frequency response of a structure, with dynamic
compliance, dynamic mobility, etc., results in convergence to the asymptote of the frequency response. Thus, a
conventional control approach, even when ideally performed, may not produce a vibration-free state.

Currently, there is a strong demand for vibration-free structures, particularly in the field of nanotechnology.
A recently disclosed technology road map, outlining a future generation of semiconductor technology, shows
that a 22-nm-wide (i.e. only 100 atoms wide) electrical lead wire is planned as a technological milestone.
However, no existing technology can cope with this demand. Realizing future semiconductors, with highly
sophisticated specifications, requires the resolution of many technological implementation problems. Among
them, the establishment of a nano-infrastructure, which requires semiconductor fabrication machines with
extremely low vibration levels, is essential.

Instead of further enhancing structural damping, which is the aim of traditional vibration control, a novel
vibration control approach that can even eliminate micro-vibration is needed to keep pace with the demands
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for continually increased precision. Moreover, the final goal of vibration control is straightforward—the new
method should generate a vibration-free state of the target structure.

By expanding on the concept of active cluster control [13–15], this paper presents a novel control strategy that
enables the creation of a stable, vibration-free state in the designated region of a flexible beam. This paper begins
by discussing the cluster control system of a distributed-parameter beam for generating a vibration-free state in
the designated area of a target beam. Next, cluster control consisting of both cluster filtering and cluster actuation
is shown, and an investigation of the stability of a cluster control system is presented. Cluster filtering extracts the
information necessary for control, while cluster actuation excites or suppresses the cluster filtering output without
causing spillover. For generating a vibration-free state in the designated area of a beam, state variables governing
beam vibration must be extracted and suppressed. For this purpose, a cluster vector that serves as the common
link between cluster filtering and cluster actuation is introduced. Furthermore, a means of establishing the cluster
vector is presented and its properties are clarified. It is found that the suppression of a performance index,
expressed in terms of the cluster vector, leads to the generation of a vibration-free state, whereas the suppression
of conventional orthogonal contributors, such as radiation modes (sometimes termed power modes), does not.
Finally, numerical simulation and experiments verify the validity of the cluster control presented in the work.

2. Cluster control of a beam, general description

This paper deals with a Euler–Bernoulli beam with any boundary condition at both ends of the beam with
Nm point control forces fi(t) and Nd point disturbance forces f d;iðtÞ acting at xi (i ¼ 1�Nm) and xd,i (i ¼ 1�Nd),
respectively. The equation of motion of a beam is then given by

EI
q4xðx; tÞ
qx4

þ rA
q2xðx; tÞ

qt2
¼
XNm

i¼1

f iðtÞdðx� xiÞ þ
XNm

i¼1

f d ;iðtÞdðx� xd;iÞ

¼ fTðtÞdþ fTd ðtÞdd , (1)

where

fTðtÞ ¼ f 1ðtÞ f 2ðtÞ � � � f Nm
ðtÞ

� �
, (2)

dT ¼ ðdðx� x1Þ dðx� x2Þ � � � dðx� xNm
ÞÞ, (3)

dTd ¼ colðdðx� xd ;1Þ dðx� xd;2Þ � � � dðx� xd ;Nd
ÞÞ (4)

and where xðx; tÞ, E, I, r, A, t, d and T denote the flexural deflection of a beam at x, Young’s modulus, the
second moment of area, mass density, cross-sectional area, time, the delta function and transpose of the
expression, respectively. Using the eigenfunction jk(x) and the associated modal coefficient Zk(t) of a beam,
the beam deflection xðx; tÞ is written as

xðx; tÞ ¼
X1
k¼1

jkðxÞZkðtÞ. (5)

Assume that the eigenfunctions are orthogonal and normalized asZ l0

0

EIjrðxÞ
d4js

dx4
dx ¼ o2

rdrs, (6)

Z l0

0

rAjrðxÞjsðxÞdx ¼ drs, (7)

where l
0
is the beam length, or is the rth resonance frequency and drs is the Kronecker’s delta function. Then,

the modal coefficient ZkðtÞ is expressed as

ZkðtÞ ¼

Z l0

0

jkðxÞxðx; tÞdx. (8)



ARTICLE IN PRESS
N. Tanaka, H. Iwamoto / Journal of Sound and Vibration 314 (2008) 481–506484
Multiplying js(x) on both sides of Eq. (1), integrating it over the domain of the target beam and substituting
Eqs. (6) and (7) into Eq. (1) produce an equation of motion in a modal coordinate system,

€ZsðtÞ þ o2
sZsðtÞ ¼ fTðtÞus þ fTd ðtÞus;d ðs ¼ 1; 2; 3; . . .Þ, (9)

where

us ¼

jsðx1Þ

jsðx2Þ

..

.

jsðxNm
Þ

0
BBBBB@

1
CCCCCA, (10)

us;d ¼

jsðxd;1Þ

jsðxd;2Þ

..

.

jsðxd ;Nd
Þ

0
BBBBB@

1
CCCCCA. (11)

Consider the case when Ns velocity sensors are placed at ~xi (i ¼ 1,2, y, Ns) of a beam. Incorporating all the
sensor outputs into the velocity vector v, we then have

vTðtÞ ¼ _xð ~x1; tÞ _xð ~x2; tÞ � � � _xð ~xNs
; tÞ

� �
. (12)

Using the eigenfunction jkð ~xiÞ and the associated modal coefficient ZkðtÞ, the velocity
_xð ~xi; tÞ at ~xi of a beam is

written as

_xð ~xi; tÞ ¼
X1
k¼1

jkð ~xiÞ_ZkðtÞ. (13)

By substituting Eq. (13) into Eq. (12), the velocity vector v yields

vðtÞ ¼ ~us _ZsðtÞ þ usðtÞ, (14)

where

~us ¼

jsð ~x1Þ

jsð ~x2Þ

..

.

jsð ~xNs
Þ

0
BBBBB@

1
CCCCCA (15)

and

usðtÞ ¼

P1
k¼1;kas

jkð ~x1Þ_ZkðtÞ

P1
k¼1;kas

jkð ~x2Þ_ZkðtÞ

..

.

P1
k¼1;kas

jkð ~xNs
Þ_ZkðtÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
. (16)

Let the number of velocity sensors, Ns, be equal to the number of actuators, Nm, and furthermore, let the
sensors and the actuators be collocated. From here on, this work deals with the case where the collocation
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holds. Therefore,

xi ¼ ~xi ði ¼ 1; 2; 3; . . . ;NmÞ (17)

and

us ¼ ~us. (18)

Next, employing a nonsingular matrix, T 2 <NmxNm , the velocity vector v(t) may be transformed into the
cluster vector ~vðtÞ,

~vðtÞ ¼ TvðtÞ. (19)

Moreover, we apply the cluster feedback to all the cluster variables ~viðtÞ ði ¼ 1; 2; . . . ;NmÞ. For this purpose, it
is necessary to obtain the cluster control vector ~fðtÞ by multiplying the cluster vector ~vðtÞ by the gain matrix
G 2 <Nm x Nm ,

~fðtÞ ¼ �G~vðtÞ, (20)

where the gain matrix G is assumed to be symmetric and positive definite. Multiplying TT by the cluster
control vector, the control vector f(t) is then given by

fðtÞ ¼ TT~fðtÞ ¼ �TTG~vðtÞ ¼ �TTGTvðtÞ. (21)

Furthermore, substituting Eq. (21) into the right-hand side of Eq. (1), multiplying it by jsðrÞ and integrating
over the domain of the target beam yield

Z l0

0

jsðrÞf
TðtÞd dr ¼ �uT

s T
TGTus _ZsðtÞ � ūT

s ðtÞT
TGTus. (22)

Thus, the equation of motion of a beam in a modal coordinate system yields

€ZsðtÞ þ uT
s T

TGTus _ZsðtÞ þ o2
sZsðtÞ ¼ �ūT

s ðtÞT
TGTus þ fTd ðtÞus;d ðs ¼ 1; 2; 3; . . .Þ. (23)

Consider the term, uT
s T

TGTus, on the left-hand side of Eq. (23). Because the gain matrix G is symmetric
and positive definite, using an appropriate nonsingular matrix P, the gain matrix may be written as

G ¼ PTP. (24)

Next, substituting Eq. (24) into the term, uT
s T

TGTus, we obtain the relation

uT
s T

TGTus ¼ uT
s T

TPTPTus ¼ uT
s ðPTÞ

TPTus, (25)

where the matrix ðPTÞTPT is obviously positive definite, so that the term uT
s T

TGTus is positive. Negative
feedback is thus achieved on every modal coordinate, providing every structural mode with damping, and
hence the system is unconditionally stable. Observe that the forcing term on the right-hand side of Eq. (23) is
independent of the modal coordinate, Zs(t), and therefore has no influence on the stability of a cluster control
system.

Next, replace the velocity sensors with the displacement sensors. Then the displacement vector n(t) is
given by

nTðtÞ ¼ xðx1; tÞ; xðx2; tÞ; . . . ; xðxNm
; tÞ

� �
. (26)

Similarly, the equation of motion in a modal coordin ate system is derived as

€ZsðtÞ þ ðu
T
s T

TGTus þ o2
s ÞZsðtÞ ¼ �u

_T

s ðtÞT
TGTus þ fTd ðtÞus;d ðs ¼ 1; 2; 3; . . .Þ, (27)
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where

u
_

s ¼

P1
k¼1;kas

jkðx1ÞZkðtÞ

P1
k¼1;kas

jkðx2ÞZkðtÞ

..

.

P1
k¼1;kas

jkðxnÞZkðtÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
. (28)

As is clear from Eq. (27), the cluster feedback via displacement sensor outputs enhances modal rigidity. In this
case, although the gain margin is infinite, the phase margin is close to zero, and hence the control system is
marginally stable.
3. Cluster vector-based control for generating a vibration-free state

3.1. Cluster filtering and cluster actuation

Supposing that a beam is harmonically oscillating, its displacement will be of the form

xðx; tÞ ¼ xðxÞejot, (29)

where

xðxÞ ¼
X1
k¼1

jkðxÞZk � uTðxÞg (30)

and where the eigenfunction vector u and the modal amplitude vector g are defined as

uðxÞ ¼ colðj1ðxÞ;j2ðxÞ; . . . ;jN ðxÞÞ 2 <
N , (31)

g ¼ colðZ1; Z2; . . . ; ZN Þ 2 CN , (32)

where Nb1. Using Eq. (9), the modal amplitude vector may be expressed as

g ¼ KoðUf þUdfd Þ, (33)

where

Ko ¼

1

o2
1 � o2

0 � � � 0

0
1

o2
2 � o2

0 ..
.

..

.
0 . .

.
0

0 � � � � � �
1

o2
N � o2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
2 <N�N , (34)

U ¼

j1ðx1Þ j1ðx2Þ � � � j1ðxNm
Þ

j2ðx1Þ j2ðx2Þ � � � j2ðxNm
Þ

..

. ..
.

� � � ..
.

jN ðx1Þ jN ðx2Þ � � � jNðxNm
Þ

0
BBBBB@

1
CCCCCA ¼

uT
1

uT
2

..

.

uT
N

0
BBBBB@

1
CCCCCA 2 <

N�Nm , (35)
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Ud ¼

j1ðxd;1Þ j1ðxd ;2Þ � � � j1ðxd;Nd
Þ

j2ðxd;1Þ j2ðxd ;2Þ � � � j2ðxd;Nd
Þ

..

. ..
.

� � � ..
.

jN ðxd;1Þ jN ðxd;2Þ � � � jN ðxd;Nd
Þ

0
BBBBB@

1
CCCCCA ¼

uT
d ;1

uT
d ;2

..

.

uT
d ;N

0
BBBBBB@

1
CCCCCCA
2 <N�Nd . (36)

Furthermore, the displacement vector in Eq. (26) is expressed as

n ¼ UTg 2 <Nm , (37)

so that

n ¼ Xof þXo;dfd , (38)

where

Xo ¼ UTKoU 2 <NmxNm , (39)

Xo;d ¼ UTKoUd 2 <
NmxNd . (40)

To generate a vibration-free state in the designated area of a target beam, this paper introduces cluster
control. For that purpose, all the governing parameters of a beam, i.e. x(x), y(x), mx(x) and qx(x), need to be
measured by cluster filtering [13]. However, three out of the four parameters, i.e. y(x), mx(x) and qx(x), are not
easy to measure in practice, and hence a finite difference method is used to extract these variables. First, the
three parameters are defined as:

yðxÞ ¼
dxðxÞ
dx

, (41)

mxðxÞ ¼
dyðxÞ
dx
¼

d2xðxÞ
dx2

, (42)

qxðxÞ ¼
dmxðxÞ

dx
¼

d3xðxÞ
dx3

. (43)

Furthermore, Eqs. (41)–(43) may approximately be expressed as:

yðxÞ ¼
xðxþ DÞ � xðxÞ

D
, (44)

mxðxÞ ¼
xðxþ 2DÞ � 2xðxþ DÞ þ xðxÞ

D2
, (45)

qxðxÞ ¼
xðxþ 3DÞ � 3xðxþ 2DÞ þ 3xðxþ DÞ � xðxÞ

D3
(46)

where D is a sensing interval.
Next, introducing the transformation matrix L, the relationship between the displacement vector n and the

transformed vector n̂, for estimating the four dominant state variables, may be expressed as

n̂ ¼ LTn; (47)

where

n̂ ¼

x̂ðxÞ

ŷðxÞ

m̂xðxÞ

q̂xðxÞ

0
BBBB@

1
CCCCA, (48)
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n ¼

xðxÞ

xðxþ DÞ

xðxþ 2DÞ

xðxþ 3DÞ

0
BBBB@

1
CCCCA, (49)

LT ¼

1 0 0 0

�1=D 1=D 0 0

1=D2 �2=D2 1=D2 0

�1=D3 3=D3 �3=D3 1=D3

0
BBBB@

1
CCCCA. (50)

It should be noted that the transformed vector n̂ is not the cluster vector (to be discussed later), and
therefore, the vector n̂ further needs to be transformed using a nonsingular transformation matrix T0. Hence,
it follows that

~n ¼

~x1
~x2
~x3
~x4

0
BBBB@

1
CCCCA ¼ TT

0 x̂. (51)

Here, the transformed vector, ~n, is the cluster vector as shown later. The ith element, ~ni, of the cluster vector
~n is then independently assigned with a feedback gain Gi, so that the cluster control force vector ~f
corresponding to the cluster vector ~n is given by

~f ¼

~f 1

~f 2

~f 3

~f 4

0
BBBB@

1
CCCCA ¼ �KG

~n; (52)

where KG is the gain matrix defined as

KG ¼

G1 0 0 0

0 G2 0 0

0 0 G3 0

0 0 0 G4

0
BBB@

1
CCCA. (53)

Cluster actuation [13] is performed in the same way as cluster filtering. The cluster actuation vector ~f is then
transformed into f̂, i.e. the counterpart of the transformed vector n̂. Hence, it follows that

f̂ ¼

f̂ 1

f̂ 2

f̂ 3

f̂ 4

0
BBBBB@

1
CCCCCA ¼ T0

~f. (54)

Furthermore, the transformed vector f̂ is transformed back into the control force vector f in a real system.
Therefore,

f ¼

f 1

f 2

f 3

f 4

0
BBBB@

1
CCCCA ¼ Lf̂. (55)
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ξ

ξξ ξξ f f

η

T0
T ΛG T0 L

f

ΦT

LT

ΛωΦ

Q−1ΨT
u

Radiation mode filtering

Cluster filtering Cluster actuation

–

Ωω

Fig. 1. Block diagram of a cluster feedback control system for generating a vibration-free state; dashed line shows a signal flow in terms of

the radiation (power) mode filtering.
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Fig. 1 shows the block diagram of a cluster feedback control system illustrating the following steps:
(1) measurement of a beam in real space, (2) cluster filtering, (3) cluster control, (4) cluster actuation and
(5) actuation of beam in real space. Note that disturbance forces are excluded from the diagram, because they
are independent of feedback control. Based on the figure, it is worth discussing which vector may be the cluster
vector that enables independent control of each cluster without causing spillover. Once the cluster vector is
identified, it becomes possible to simplify the control system. The control system may then be altered from a
multiple-input multiple-output (MIMO) system to a multiple single-input single-output (SISO) system, thus
significantly reducing the control task burden.

3.2. Cluster vector

Consider a feedback control loop consisting of the state vectors zi and transfer matrices Tij. A loop-gain
matrix starting from the ith state vector zi to itself may be expressed as

~Ti ¼ Ti;i�1Ti�1;i�2 � � �Tiþ1;i. (56)

Therefore, the state equation from zi to zi becomes

zi ¼ ~Tizi. (57)

If the loop-gain matrix ~Ti is diagonal, then the associated vector zi is defined as the cluster vector. If this is the
case, Eq. (57) will be of the form

zi ¼

z1

z2

..

.

zN

0
BBBBBB@

1
CCCCCCA
¼

LT ;1 0

LT ;2

. .
.

0 LT ;N

0
BBBBBB@

1
CCCCCCA

z1

z2

..

.

zN

0
BBBBBB@

1
CCCCCCA

¼ KTzi. (58)

Therefore, the ith element zi of the vector zi is related only to its own element through the transmittance
LT,i. As mentioned before, once the cluster vector is found, the feedback control system may be restructured from
a MIMO system to a cluster control system—a multi SISO system with input vector zi+1 and output vector zi.

Consider a control loop that consists of N state vectors and N transfer matrices. Depending on the state
vectors that are employed as input and output vectors, there are N possible combinations of a loop-gain
matrix. Hence, among N loop-gain matrices, if the resultant matrix is found to be diagonal, the associated
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vector is the cluster vector. For instance, in the case of a beam, four dominant variables—
xðxÞ; yðxÞ; mðxÞ and qxðxÞ—uniquely resolve the dynamical behavior of the beam; however, the vector n̂
consisting of the four parameters is not the cluster vector, as shown later.

Case 1: Is the displacement vector n the cluster vector?

With reference to Fig. 1, consider a loop-gain matrix of a feedback control system starting from n to itself, n.
The displacement vector n may then be expressed as

n ¼ �XoLT0KGT
T
0L

Tn

¼ �Xof. (59)

Note that among the matrices in Eq. (59), only the matrix T0 is adjustable whereas the others have already
been defined. Therefore, it is not possible for XoLT0KGT

T
0L

T to be a diagonal matrix, and hence, the vector n
cannot be the cluster vector. In addition, matrix Xo is symmetric but not diagonal; therefore, there are
crosstalk transmittances from an element of f to the respective elements of the displacement vector n.

Case 2: Is the transformed displacement vector n̂ the cluster vector?

Using a loop-gain matrix starting from the transformed displacement vector n̂ to itself, the vector n̂ may be
expressed as

n̂ ¼ � LTXoLT0KGT
T
0 n̂

¼ � LTXoLf̂. (60)

If the transformation matrix L was adjustable, it would allow the symmetric matrix Xo to be diagonal; hence,
n̂ would be the cluster vector. However, the matrix L is resolved as a finite difference matrix and is therefore
unable to diagonalize the matrix Xo. Thus, the ith control force f̂ i of f̂ excites the elements of the vector n̂.

Case 3: Is the transformed vector ~n the cluster vector?

A loop-gain matrix starting from the transformed vector ~n to itself may be expressed as

~n ¼ � TT
0L

TXoLT0KG
~n

¼ � TT
0L

TXoLT0
~f. (61)

Now that the matrix LTXoL is symmetric (recall that KG is diagonal; therefore, it can be omitted in the current
discussion), an appropriate orthogonal matrix T0 is able to diagonalize LTXoL, and hence the transformed
vector ~n can be the cluster vector. If this is the case, the ith element of the force vector ~f excites only the ith
element of the transformed vector ~n without causing control spillover, i.e.

~n ¼

~x1
~x2
~x3
~x4

0
BBBBB@

1
CCCCCA ¼ �

Y1ðoÞ 0 0 0

0 Y2ðoÞ 0 0

0 0 Y3ðoÞ 0

0 0 0 Y4ðoÞ

0
BBBBB@

1
CCCCCA

~f 1

~f 2

~f 3

~f 4

0
BBBBB@

1
CCCCCA

¼ � KY
~f. (62)

Using Eq. (52), Eq. (62) further expands to

~n ¼ � KY~f

¼ � KYKG
~n

¼ �

G1Y1ðoÞ 0 0 0

0 G2Y2ðoÞ 0 0

0 0 G3Y3ðoÞ 0

0 0 0 G4Y4ðoÞ

0
BBBBB@

1
CCCCCA

~x1
~x2
~x3
~x4

0
BBBBB@

1
CCCCCA

¼ � KYG
~n. (63)
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Thus, by introducing cluster filtering and cluster actuation, a MIMO control system with four inputs and four
outputs may be decoupled into four SISO control systems, thereby significantly reducing the signal-processing burden
handled during control. As such, the eigenpairs in each cluster may be independently resolved, thus avoiding spillover.

3.3. State equation of a cluster control system

Consider a beam element, as shown in Fig. 2, with the node number i and i�1 at the right and left
ends of the beam element, respectively. Using the transfer matrix Ti;i�1, which bridges these two nodes, the
relation between the state vector ziðxiÞ and ziðxi�1Þ abbreviated as zi and zi�1, respectively, is expressed by

zi ¼ Ti;i�1ðdiÞzi�1, (64)

where

Ti;i�1ðdiÞ ¼

t1 t4 t3 t2

k4t2 t1 t4 t3

k4t3 k4t2 t1 t4

k4t4 k4t3 k4t2 t1

0
BBB@

1
CCCA, (65)

where

k ¼
rAo2

EI

� �1
4

(66)

and where

t1 ¼ ðe
�jkdi þ e�kdi þ ejkdi þ ekdi Þ=4, (67a)

t2 ¼ ð�je�jkdi � e�kdi þ jejkdi þ ekdi Þ=4k3, (67b)

t3 ¼ ð�e
�jkdi þ e�kdi � ejkdi þ ekdi Þ=4k2, (67c)

t4 ¼ ðje
�jkdi � e�kdi � jejkdi þ ekdi Þ=4k. (67d)

Then, the state equation of a beam where Nm point forces act is given by

zR ¼ TRLzL þ
XNm

i¼1

TRif i (68)

where

fTi ¼ 0 0 0 f i=EI
� �

. (69)
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Fig. 2. Beam element and internal forces.
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Next, the boundary conditions at both ends of the beam, R and L, are determined by setting two out of the
four variables in the state vector equal to zero. Consider the case when the ith and jth elements of zR are set
equal to zero, whereas the mth and nth elements of zL are set to be nonzero. For instance, a set of m ¼ 3,
n ¼ 4, i ¼ 1 and j ¼ 2 expresses the case of a cantilever beam with the left end clamped. Eq. (64) further
expands to:

0i ¼ RLtimzLm þ RLtinzLn þ
1

EI

XNm

k¼1

Rkti4f k, (70)

0j ¼ RLtjmzLm þ RLtjnzLn þ
1

EI

XNm

k¼1

Rktj4f k, (71)

where 0i and ijtkl denote zero of the ith element of the vector, and the kth and lth element of the transfer matrix
Tij, respectively. From Eq. (66), the elements zLm and zLn of the state vector zL are written as

zLm ¼ �
1

EIDch
RLtjn

XNm

k¼1

Rkti4f k � RLtin

XNm

k¼1

Rktj4f k

 !
, (72)

zLm ¼ �
1

EIDch

�RLtjm

XNm

k¼1

Rkti4f k þ RLtim

XNm

k¼1

Rktj4f k

 !
, (73)

where

Dch ¼ RLtimRLtjn � RLtinRLtjm. (74)

As the initial vector zL is obtained from Eqs. (70) and (74), the state vector zx at x of the beam may be
determined uniquely.

Fig. 3 illustrates the signal flow diagram of a cluster control system designated to control the four state
variables of a beam: xðxÞ; yðxÞ; mxðxÞ and qxðxÞ, which uniquely govern the system equation of a beam
subjected to four collocated point sensors/actuators. Supposing that the beam is subjected to a disturbance
force fd acting at xd, the state equation at x in the figure is then written as

zx ¼ Tx;LzL þ Tx;1f1 þ Tx;2f2 þ Tx;3f3 þ Tx;4f4. (75)

3.4. Vibration-free node

It is worth discussing the physical meaning of a vibration-free state. Fig. 4 illustrates the time histories of the
four state variables (i.e. dominant parameters that uniquely resolve the dynamic behavior of a
clamped–clamped beam) excited at the third modal frequency. Table 1 lists the beam specifications. Observe
that two nodes appear in the time histories of the displacement response of the beam; nodes are normally
considered vibration-free. Thus, in some industries there have been attempts to avoid vibration by designing
such that a node position intentionally coincides with the grip location of a hand-tool. It is true that when
placing an accelerometer at a node, the sensor output becomes small enough; however, the node is not
vibration-free. A vibration-free state means that all the four state variables dominating the dynamical
characteristics of a beam must be null. Similarly, a ‘vibration-free node’ denotes that all the elements of the
corresponding state vector are zero.

We now consider the benefits of generating a vibration-free node. Consider a beam’s state vectors zi and zj

at ‘i’ and ‘j’, respectively. Using a transfer matrix Tji, which connects both state vectors, the state vector zj is
given by

zj ¼ Tjizi. (76)

If the state vector zi is a null vector, the node at ‘‘i’’ is vibration-free. Then, the state vector zj at ‘‘j’’ apparently
becomes a null vector, thus implying that the region between the points ‘‘i’’ and ‘‘j’’ is also vibration-free.
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Fig. 3. Signal flow of cluster control of a beam for generating a vibration-free state.
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Therefore, generating a vibration-free node at a designated location enables one to produce a vibration-free
state around the designated point. Similarly, the so-called node where both xðxÞ and mxðxÞ are zero seems
to be vibration-free; however, the other state variables, yðxÞ and qxðxÞ, are nonzero. Hence, the state
vector at the node is not vibration-free but only bridges opposite sides of the node for transferring structural
waves.

We now consider how the above-mentioned method differs from DVFB [18,19] with an extremely
high feedback gain applied at a sensor/actuator collocated location. This is clarified by considering the
difference between the so-called node and a vibration-free node. Because conventional active vibration
control, including DVFB, simply produces a node at a sensor/actuator location, a vibration-free state may not
be realized. Even with the introduction of control performance for minimizing the kinetic energy of a beam, a
vibration-free state may not be generated, because a completely vibration-free state is beyond the scope of
the design.
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Fig. 4. Time histories of four state variables of a clamped–clamped beam excited at the third modal frequency.

Table 1

Dimensions of a clamped–clamped beam used in numerical analysis and experiment

Total length Thickness Width

1.105m 1.5mm 4.5 cm

Young’s modulus Density Material

7.4� 1010N/m2 2770 kg/m3 Duralumin
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3.5. Performance index

Now that we know how to generate a vibration-free state in the designated region of the target beam, a
vibration-free node needs to be produced at x, the designated control point of a beam. Consequently,
dominant variables, xðxÞ; yðxÞ; mxðxÞ and qxðxÞ, are to be extracted and suppressed. Therefore, the per-
formance index J, needed to achieve the vibration-free state, is defined as

J ¼ n̂
H

n̂

¼ x̂
2
þ ŷ

2
þ m̂2

x þ q̂2
x. (77)
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Because all the elements of the vector n̂ are dominant factors that uniquely resolve the dynamic
behavior of a beam, the performance index consisting of all the four elements in Eq. (77) needs to be
minimized.

Minimization of the performance index, defined to evaluate a vibration-free state, is performed from the
viewpoint of the cluster vector. For this purpose, the cluster vector must be connected to both cluster filtering
and cluster actuation. From Eq. (38), n̂ is written as

n̂ ¼ LTn ¼ LTð�Xof þXo;d fdÞ. (78)

Using Eq. (60), n̂ further expands to

n̂ ¼ LTð�XoLT0KGT
T
0L

TnþXo;d fdÞ

¼ LTð�XoLT0KGT
T
0 n̂þXo;dfdÞ, (79)

so that

n̂ ¼ ðIþ LTXoLT0KGT
T
0 Þ
�1LTKXo;dfd . (80)

As stated before, n̂ is not the cluster vector. The matrix term ðIþ LTXoLT0KGT
T
0 Þ on the right-hand side of

Eq. (80) is not diagonal; therefore, it is not certain whether the suppression of the elements of n̂ may directly
lead to the suppression of the performance index due to the matrix cross terms involved. According to
Eq. (77), the performance index is expressed by summing up the squares of the four variables. Thus, the
suppression of each term is likely to decrease the performance index. However, this is not always true. Because
the vector n̂ is not the cluster vector, the suppression of one term might increase the other terms, as they are
not independent of each other. This is easily deduced from the time histories of the four state variables of a
beam, as shown in Fig. 4. The location of the maximum absolute value of the deflection coincides with that of
the minimum absolute value of the slope; hence, the suppression of xðxÞ does not necessarily lead to the
suppression of yðxÞ.

With this in mind, consider the cluster vector ~n, which is expressed as

~n ¼ �TT
0L

TXoLT0KG
~nþ TT

0L
TXo;dfd . (81)

Hence, it follows that

~n ¼ ðIþ TT
0L

TXoLT0KGÞ
�1TT

0L
TXo;dfd . (82)

Because ~n is the cluster vector, Eq. (82) further expands to

~n ¼ ðIþ KYGÞ
�1TT

0L
TXo;d fd

¼ KYGT
T
0L

TXo;dfd , (83)

where

KYG ¼ ðIþ KYGÞ
�1

¼

1=ð1þ G1Y1ðoÞÞ 0 0 0

0 1=ð1þ G2Y2ðoÞÞ 0 0

0 0 1=ð1þ G3Y3ðoÞÞ 0

0 0 0 1=ð1þ G4Y4ðoÞÞ

0
BBBBB@

1
CCCCCA. (84)

Note that the matrix term TT
0L

TXo;d fd in Eq. (83), resolved in terms of disturbance forces, is independent
of control, and hence only the diagonal matrix KYG is responsible for attenuating the performance
index.

Recall that the transformed displacement vector n̂ is related to ~n by the following relation:

n̂ ¼ T0
~n; (85)
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where T0 is the orthogonal matrix. Therefore, the performance index J yields

J ¼ n̂
H

n̂ ¼ x̂
2
þ ŷ

2
þ m̂2

x þ q̂2
x

¼ ~n
H
TT
0T0

~n

¼ ~n
H ~n ¼ ~x

2

1 þ
~x
2

2 þ
~x
2

3 þ
~x
2

4. (86)

Apparently, from Eq. (86), the suppression of the squared cluster elements, ~x
2

i (i ¼ 1, 2, 3, 4), of the cluster

vector ~n definitely leads to the suppression of the performance index J, thereby generating a vibration-free

state in the target region of a beam without causing spillover via ~f i, as expressed in Eq. (62). In this case, the

suppression of ~xi implies the attenuation of 1=ð1þ GiYiðoÞÞ, thereby increasing the feedback gain, Gi (i ¼ 1, 2,

3, 4). On the contrary, the suppression of, for instance, x̂, an element of n̂, affects the other state variables,

because the transformed displacement vector n̂ is not the cluster vector as was discussed before.
3.6. Implementation of cluster vector-based control

As a result of suppressing the elements of the cluster vector ~n, the performance index for evaluating the

vibration-free state of a beam decreases. The cluster vector ~n may be obtained by transforming the displace-

ment vector n using the orthogonal matrix T0. Moreover, the cluster vector ~n may be independently

controlled by the associated control force ~f. As such, to generate a vibration-free state in the designated area of
a beam, the cluster vector needs to be acquired and suppressed. Note that the transformation matrix T0,
introduced in Eq. (85), is a function of frequency; therefore, the cluster control that generates the cluster

control force vector ~f is also frequency dependent. Hence, the implementation of cluster control does not seem
viable.

Recall that the cluster vector ~n and the cluster control force vector ~f are defined in the cluster space,
whereas the implementation of cluster control is to be realized in real space. Then, the control law ~f ¼ �KG

~n
(see Fig. 1) defined in the cluster space may be expressed in real space as

f ¼ LT0
~f

¼ � LT0KG
~n

¼ � LT0KGT
T
0L

Tn. (87)

Here, the cluster gain matrix is assumed to be described by

KG ¼ �GI, (88)

where G and I are a constant feedback gain and an identity matrix, respectively. The cluster feedback gain
matrix KG in Eq. (88) is obtained by making all the feedback gains in Eq. (53) equal. This implies that each
element of the cluster vector contributing to the performance index is treated evenly. The expression is still
appropriate for minimizing the performance index in Eq. (86) for generating a vibration-free state. The control
force vector f then yields

f ¼ � GLT0IT
T
0L

Tn

¼ � GLT0T
T
0L

Tn

¼ � GLLTn. (89)

Therefore, the control law in Eq. (89) denotes that the control force f to be implemented in real space is no
longer frequency dependent, and may then be realized by constant feedback gain in terms of the displacement
vector n. Note that performing feedback control, as expressed by Eq. (89), is tantamount to applying the
control law ~f ¼ �KG

~n in the cluster space, thereby reducing the performance index without causing spillover,
thus leading to the generation of a vibration-free state.
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4. Radiation modes and cluster vector

A performance index for evaluating, for instance, the structural acoustic power or the potential energy
(frequently used in acoustics) may be expressed in a quadratic form [16–20] with respect to the modal
amplitude vector g as

J ¼ gHAg, (90)

where A is the error weighting matrix that is real, symmetric and positive definite. In general, the error
weighting matrix A is not necessarily diagonal, which implies that the normal structural modes are not
orthogonal contributors to the performance index. Therefore, the minimization of the modal amplitudes of
the individual structural modes will not necessarily reduce the performance index. As with the minimization of
the performance index, it is a common practice to describe the performance index in terms of orthogonal
contributors such as radiation modes [16–20] (sometimes termed power modes [16,20]). When rewriting the
performance index using the radiation mode vector u 2 CN , which is the orthogonal contributor vector for the
performance index, the modal amplitude vector g further expands to

g ¼ Qu, (91)

where the unitary matrix Q is the orthonormal transformation matrix consisting of the eigenvectors of A. The
relationship between g and u in Eq. (91) is illustrated in Fig. 1. It is now worth connecting the performance
index J, defined in Eq. (77), to the general description in Eq. (90). Substituting Eqs. (90) and (91) into Eq. (77),
the performance index is then expressed as

J ¼ n̂
H

n̂

¼ gHULLTUTg

¼ uHQHULLTUTQu. (92)

The unitary matrix Q converts the matrix ULLTUT in Eq. (92), which is symmetric and positive definite, to a
diagonal matrix K̂. Then, the performance index will be of the form

J ¼ uHK̂u ¼
XN

i¼1

l̂iu
2
i , (93)

where

u ¼

u1

u2

..

.

uN

0
BBBB@

1
CCCCA, (94)

K̂ ¼ QHULLTUTQ. (95)

Here, the eigenvalues, l̂i, of the matrix, QHULLTUTQ, are apparently real and positive, and hence the
terms comprising the performance index are all positive. The suppression of ui, the elements of the radiation
(power) mode vector u, leads to the minimization of the performance index. Furthermore, the power mode
eigenfunction vector w may be defined as

wðxÞ ¼ QHuðxÞ. (96)

The above expression may be derived in the following manner:

xðxÞ ¼ uTðxÞg ¼ uTðxÞQu

¼ ðQHuðxÞÞTu

¼ wT
ðxÞu. (97)
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It is now necessary to investigate the validity of conventional radiation (power) modes for minimizing the
performance index. First, it should be noted that the radiation modes are introduced without considering the
architecture of a control system; they are merely defined to describe the performance index in terms of
orthogonal contributors, and hence, the consideration of sensing and actuation necessary for control is
nonexistent. As stated before, if the radiation mode vector u is the cluster vector, the performance index
expressed in terms of u may certainly be reduced by suppressing the respective element of the radiation mode
vector. With reference to Fig. 1, the radiation mode vector may be expressed as

u ¼ �wLT0KGT
T
0L

TwTu. (98)

Using the assumption for the cluster feedback gain matrix described in Eq. (88), Eq. (98) is further
simplified to

u ¼ �GwLLTwTu. (99)

Clearly from Eq. (99), the radiation mode vector u is not the cluster vector, because the matrix wLLTwT is not
diagonal. Therefore, it is not certain whether suppressing each element of u will attenuate the performance
index.

Consider the relationship between the cluster vector ~n and the radiation mode vector u. The radiation mode
vector is apparently responsible for the performance index as shown in Eq. (92), so too is the cluster vector ~n as
in Eq. (86). The block diagram of the cluster control system shown in Fig. 1 indicates that the cluster vector is
related to the radiation mode vector by the relation

~n ¼ TT
0L

TwTu. (100)

Eq. (100) implies that the radiation mode vector u is transformed into ~n via TT
0L

TwT. When modal amplitudes
ui ði ¼ 1; 2; 3 . . .Þ are grouped into their respective clusters with appropriate weights, modal amplitudes then
affect the reduction of the performance index as a cluster element.
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5. Numerical simulation for generating a zone of quiet

To investigate the fundamental characteristics of the cluster control presented in this work, a numerical
simulation is conducted using a clamped–clamped beam as a test vehicle, with a disturbance force of
amplitude 0.05N acting at xd ¼ 1m. Table 1 lists beam specifications. In the numerical simulation, the control
signals are fed to the four collocated control actuators, situated at x1 ¼ 0:085m; x2 ¼ 0:17m; x3 ¼

0:255m and x4 ¼ 0:34m. The sensor placement interval is 0.085m. These specifications are used in the
experiment and will be discussed later.

As discussed in Section 2, the stability of a cluster control system is guaranteed by displacement-based
feedback as well as velocity-based feedback. To investigate the attributes of cluster control, this study employs
velocity feedback-based cluster control in the numerical simulation, and hence, the feedback gain G in Eq. (88)
is denoted as joG; however, the expansion in terms of the displacement-based feedback may also be
undertaken in exactly the same manner.

Fig. 5 illustrates (1) control effects in terms of J and (2) the absolute cluster elements j~xij ði ¼ 1; 2; 3; 4Þ
(expressed in percentages) at the third modal frequency (35.27Hz) of the beam versus the cluster feedback
gain G. From the figure, it is clear that as the feedback gain G increases, both the performance index
J and the magnitudes of the cluster elements decrease monotonically. This allows us to understand
the contribution rate of each component to the performance index; on increasing the feedback gain
G, j~x1j starts decreasing at G ¼ 10�7 kg/s, while the other three elements remain constant. Then,
j~x2j follows at G ¼ 10�5 kg/s. Observe that the curve of the performance index is quite similar to
that of j~x1j, implying that the cluster element ~x1 is the greatest contributor to the control effect expressed
by J.

Fig. 6 shows the control effects in terms of Ĵ, and the estimated dominant state variables of the beam,
x̂; ŷ; m̂x and q̂x. In contrast to the control effect demonstrated in Fig. 5, all of the estimated state variables
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begin to decrease almost simultaneously at G ¼ 10�7 kg/s, implying that the contribution rate of
each estimated state variable to the control effect for generating a vibration-free state is comparable.
Observe that the curve of J in Fig. 5 and that of Ĵ in Fig. 6 are the same as proved in Eq. (86). The suppression
of the cluster elements and the four estimated state variables reduces the control effect for generating a
vibration-free state in the designated region of a beam. Note that the control effectiveness increases
in proportion to the cluster feedback gain, as expressed in Eq. (84); an increase of G leads to a decrease
in the gain of the respective transfer function connecting a cluster element and the corresponding distur-
bance force.

Fig. 7 depicts the time histories of the four state variables of the beam after the application of cluster control
driven with a velocity feedback gain of 100 kg/s. Comparison of Figs. 4 and 7 allows one to comprehend the
nature of the vibration-free state of a beam; two nodes appear in the displacement time histories when the
amplitudes of the slope and the shear force at the nodes are at a maximum, as shown in Fig. 4. Thus, only two
of the four state variables at the so-called node are zero, and hence they are not vibration-free. In contrast,
after cluster control, the magnitudes of the four state variables, which uniquely resolve the dynamic behavior
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of a beam, are significantly reduced, as shown in Fig. 7. The maximum displacement value in the region is
reduced to only 0.17% of that before control. The magnitudes of all the four dominant variables in the region
are not completely nullified, because the control effect is dependent on the cluster feedback gain; on further
increasing the cluster feedback gain, the values of all the four variables continue to decrease, resulting in a
vibration-free state of a beam.

The time histories of the displacement response of the clamped–clamped beam at 25Hz with the cluster
feedback gain varying from 1 to 50 kg/s are shown in Fig. 8. In the region where cluster control is performed,
the amplitude of the displacement is reduced as the cluster feedback gain increases.

Fig. 9 illustrates the frequency response of the beam displacement at x2 ¼ 0.17m (the second sensor/
actuator location from the left) for a frequency range up to 100Hz. As the cluster feedback gain
G increases, the displacement response decreases throughout the whole frequency range of interest.
Note that the control effect pattern of the frequency response is significantly different from that
of the conventional vibration control strategy. Not only does cluster feedback augment structural
damping, but the asymptote of the displacement response also moves downwards as the cluster feedback
gain increases.

Resonance peaks appear at 13, 35 and 70Hz in the frequency range of interest due to cluster control, and
hence, grave concerns may arise if the peaks lead to the instability of a feedback control system. However, the
stability of the cluster feedback control system was already proved to be unconditionally stable in Section 2.
Therefore, it is not clear whether the peaks are due to the effect of control stability or not. To decipher this
phenomenon, we take a look at the time histories of the four state variables shown in Fig. 7. The final goal of
cluster control is to generate a vibration-free node at the designated location; however, the control effect is
gain-dependent, and hence the process shown in Fig. 7 (G ¼ 100 kg/s) to arrive at the final goal. We focus on
the left side of the four state variables for the region between the fourth sensor/actuator location from the left
(x4 ¼ 0.34m) and the right end of the beam, which is clamped. The figure shows that the beam in this region,
which is out of the control target, may be approximately considered a clamped–clamped beam of length
0.765m ( ¼ 1.105–0.34m). The modal frequencies of such a beam are close enough to the three above-
mentioned frequencies. Hence, the resonance peaks appearing in Fig. 9 do not lead to the instability of the
feedback control system.
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6. Experiment

Fig. 10 shows the test rig for the cluster control system; the specifications of the beam used in the experiment
are the same as those used in the numerical analysis (see Table 1). An envelope of the beam displacement
distribution was obtained using a wave visualization system that had been developed for this experiment.
The wave visualization system consists of a gap sensor array positioned along the beam at 8.5 cm intervals.
The sensor outputs, simultaneously acquired by a data logger, were directly transferred to the wave
visualization system to draw the envelopes of the displacement response of the beam. Four electro-dynamic
actuators (for cluster actuation) and four acceleration sensors (for cluster filtering) are attached at the
same beam positions used in the simulation, i.e., x1 ¼ 0:085m; x2 ¼ 0:17m; x3 ¼ 0:255m and x4 ¼ 0:34m.
In addition, a piezo-ceramic actuator is attached at xd ¼ 1m for exciting the beam.

Fig. 11(a) depicts the experimental results of the time histories of the displacement response of the target
beam, driven at the second modal frequency, 14.2Hz, prior to cluster control. The maximum displacement
amplitude is approximately 2.2mm. Fig. 11(b) illustrates the time histories of the displacement response after



ARTICLE IN PRESS

Fig. 10. Test rig of cluster control.
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cluster control. As seen from the figure, the maximum value of the displacement is reduced to 70 mm,
i.e., about 3.2% of that before control. Note that the vibration-free state is generated in the designated region
of the beam, wherein sensors and actuators are placed. The displacement value in this region, for instance
at x2 ¼ 0.17m, is 9.5 mm, which is about 0.4% of the maximum displacement response value before control.
Fig. 11(c) shows the time histories of the displacement response for the beam excited at the third modal
frequency (28.5Hz) before cluster control. The maximum displacement response amplitude is 8.4mm, which is
reduced to 40 mm after control, i.e. 0.48% of the value before control, as shown in Fig. 11(d). In the ‘zone of
quiet’, the displacement amplitude is reduced to 8 mm at x2 ¼ 0:17m, i.e. 0.1% of the maximum displacement
before control. It is found that the experimental results are not as good as those predicted by the simulations
because a sufficient feedback gain was not provided. This is due to the following reasons: (1) the signal/noise
ratio for signal processing was not high; (2) the amplifiers saturated when feedback gain was increased; (3) the
control power of the electro-dynamic actuators was not sufficient; (4) sensor resolution was not very fine, due
to the integration of acceleration output using an analog integrator; and (5) the phase properties were affected
by a high-pass filter used to avoid signal drift.

Fig. 12 depicts the dynamic mobility of the beam, before and after cluster control, measured at the second
sensor location from the left ðx2 ¼ 0:17mÞ, the beam being provided with random excitation at xd ¼ 1m.
Because of the load effect due to the accelerometer pickups attached on the beam, the resonance frequencies
slightly reduced compared to those in the analysis. In the experiment, cluster feedback gain was determined in
situ while monitoring the waveforms of the beam response being suppressed. To drive the actuators, a
feedback gain of 0.37A/V was applied between the charge amplifier and the power amplifier outputs. Observe
that the asymptote of the frequency response shifted down by 10 dB throughout the frequency range of
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interest, which is characteristic of cluster control. For instance, the control effect at the third modal frequency
was 36 dB, about 1.6% of that without control. Because of the high-pass filter, which has a cut-off frequency
of 0.1Hz to avoid signal drift, the frequency response at low frequencies is toothed, thereby imposing
restrictions on feedback gain increments.

7. Conclusions

With the aim of generating a vibration-free state in the designated area of a target beam, active cluster
control was presented. Active cluster control consists of both cluster filtering and cluster actuation.
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Cluster filtering extracts the state variables of a beam, which governs the dynamic behavior of a beam, and
cluster actuation suppresses the extracted state variables without causing spillover. It was mathematically
verified that cluster control guarantees the unconditional stability of the control system. It was found that four
state variables of a beam must be extracted and suppressed to generate a vibration-free state in the designated
area of a beam. For this purpose, a cluster vector, which is a common link between cluster filtering and cluster
actuation, was introduced. It was also found that the suppression of a performance index, expressed in terms
of the cluster vector, generates a vibration-free state in the beam, whereas the suppression of conventional
orthogonal contributors, such as radiation modes, does not. Moreover, numerical simulation showed that
active cluster control can generate a vibration-free state in the designated region of a target beam. Numerical
simulation was followed by experiment, verifying the validity of cluster control, as presented in this work.
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